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Ultrametricity in the infinite-range Ising spin glass 
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t AT&T Bell Laboratories, Murray Hill, NJ 07974, USA 
$ Department of Physics, University of California, Santa Cruz, CA 95064, USA 

Received 26 October 1987 

Abstract. Monte Carlo simulations have beenused to study the development of ultrametricity 
in the low-temperature phase of the infinite-range Sherrington-Kirkpatrick model of the 
Ising spin glass. Equilibrium configuration overlap data have been obtained for sizes N 
between 16 and 512 spins at the transition temperature T = T, and in the spin-glass phase at 
T = O.6Tc. At the lower temperature, the data are consistent with the emergence, in the 
thermodynamic limit, of isosceles triangles formed by the mutual overlaps of three con- 
figurations, as predicted by Mezard and co-workers. Evidence for equilateral triangles is not 
clear and may require larger sizes. This behaviour is contrasted with the data at T = T,, 
where all overlap distributions are found to scale with size in terms of a single exponent. 

1. Introduction 

The past few years have witnessed significant advances in our understanding of the 
low-temperature phase of the infinite-range model of spin glasses. The Sherrington- 
Kirkpatrick (SK) (1975) model, proposed originally as the mean-field limit of the Ising 
model of spin glasses (Edwards and Anderson 1975), iterated through a number of 
attempts (Thouless etal1977, Bray and Moore 1978) before the broken replica symmetry 
solution was put forth (Parisi 1979, 1980a). The original solution of Parisi involved the 
generalisation of the concept of the spin-glass order parameter q to an order parameter 
function q(x) , of a once mysterious variable x which has been identified with a hierarchy 
of overlaps in the static description (Parisi 1980b) and a hierarchy of time scales in a 
dynamic description (Sompolinsky and Zippelius 1981,1982, Sompolinsky 1981). Later, 
it became clear (Parisi 1983) that x is an integral of the probability distribution P(q) of 
the spin-glass order parameter q ,  i.e. dx/dq = P(q). P(q)  is defined in the following 
way. The system is not in a unique thermodynamic state (Young 1981, de Dominicis and 
Young 1983) but, in the statistical mechanics average, is in different states ‘a7 with 
probability P,. If the magnetisation of site i when the system is constrained to be in state 
‘a’ is mr, then P(q) is defined to be 

where 

is the ‘overlap’ between the magnetisation of states LY and p, and ( .  . . ) J  is an average 
over the quenched random-bond configuration. 
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Unlike the corresponding distribution of the order parameter in a system without 
disorder (e.g. the distribution P(m) of magnetisation m for a feromagnet), P(q)  does 
not reduce to a single delta function (modulo symmetry operations) even in the thermo- 
dynamiclimit N +  m. Instead, P(q)  consistsof adeltafunctionat the Edwards-Anderson 
order parameter q E A j h S  a continuous distribution below qEA, going down to q = 0. A 
non-trivial P(q)  for N +  cc implies that the system is not in a unique thermodynamic 
state in the low-temperature phase. The Edwards-Anderson order parameter, qEA 

measures ordering in a single state and is the same for all states while the continuous 
part of P(q)  comes from ‘overlaps’ between different states. Because a few states 
dominate the statistical sum, a number of quantities are not self-averagingin the thermo- 
dynamic limit (Mezard et a1 1984a, b; Young et a1 1984). Following these results was the 
discovery (Mezard et a1 1984a, b) that the space of states {a} was ultrametric; namely, if 
one considers the overlaps qap, qpy and qya between three pure states a, /3 and y ,  then 
the smaller two are strictly equal in the thermodynamic limit. Thus the triangle whose 
sides are the three overlaps is isosceles. Furthermore, there is a finite probability (one 
quarter) of having all three equal (equilateral triangle), an occurrence which has zero 
probability for randomly chosen triangles. The isosceles triangle is a direct consequence 
of the replica breaking scheme and implies a hierarchical development of the free-energy 
minima (valleys) below the spin-glass transition temperature. The equilateral triangle is 
based on the more subtle property of the weights of the various valleys (Mezard et a1 
1987). These results follow without further assumptions from the replica method and 
Parisi’s scheme. However, a linear stability analysis of the broken replica symmetry 
solution (de Dominicis and Kondor 1983), while yielding no instabilities, has shown a 
large number of marginal directions (zero-mass modes), and a non-linear stability 
analysis has not been performed. In other words, while the Parisi solution is shown to 
be extremal, it is not proved with certainty that it is the low-temperature phase. Indeed, 
there have been very recent challenges to the Parisi solution (Horner 1986,1987). Thus 
it would be interesting to check its predictions using other techniques (e.g. numerical 
simulations). In this paper, we describe such numerical simulations, with emphasis on 
testing the predictions of ultrametricity. A preliminary report on some of these results 
has appeared elsewhere (Bhatt and Young 1986). Searches for ultrametricity have been 
made in other models (Sourlas 1984, Kirkpatrick and Toulouse 1985, Solla et a1 1986, 
Mezard et a1 1987) and a review article has appeared recently (Rammal et a1 1986). 

2. Calculational details 

We have performed Monte Carlo simulations on the SK model in zero magnetic field for 
a sequence of sizes ranging from N = 16 spins to N = 512 spins at the spin-glass transition 
temperature T,, and at a temperature T = O.6Tc. The Hamiltonian for the system is 

where Si = -+ 1 are Ising spins and the sum in equation (3) is over all pairs. JI, are quenched 
random variables with a probability distribution 

P(Jij) = [ ( N  - 1 ) / 2 ~ ] ~ / *  exp[ - ( N  - 1)J$/2] (4) 
i.e. a Gaussian distribution with mean zero and variance ( N  - l)-’ chosen to give a 
mean field T, = 1. 
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The sequence of sizes studied have been found previously (Bhatt and Young 1985) 
to be large enough to confirm the T, and mean-field exponents via a finite-size scaling 
analysis. Evidence for a non-trivial P(q)  in the low-temperature phase (Young 1983) 
was seen in even smaller sizes ( N  < 192), although the convergence towards the infinite- 
N limit was somewhat slow. P(q)  has also been analysed by others (Parga et a1 1984) 
using a different method, which is approximate. 

For each size, we run in parallel three copies Sq(a = 1-3) of the system with the same 
bond configuration and accumulate data with 4&2000 different bond realisations 
depending on size. The copies are started with independent random initial configurations 
(characteristic of infinite temperature) and allowed to come to equilibrium in a time to 
and measurements are made over the next 2t,10t0. The method of ensuring equilibration 
has been described previously (Bhatt and Young 1985, 1988). Basically, it consists of 
ascertaining whether the spin-glass susceptibility obtained from different copies 

equals that obtained from the same copy: 

within statistical errors. It is found that equation (5) underestimates the true xSG while 
equation (6) overestimates it if to is not long enough. Both of course converge to the true 
x S G  for long enough to, where zSG = N - l E i , j ( ( S i S j ) $ ) J  and (. . .)r denotes a thermal 
average for a given realisation of the bonds J ,  and (. . .)J indicates an average over the 
bond distribution. 

We have looked at various quantities related to the spin overlap between different 
copies: 

(7) 
1 
N i  

Q,p( t )  = -E Sf(t0 + t)S$(to + t). 

One is the usual order parameter probability distribution 
t 

where we have restricted ourselves to q > 0, noting that PN(-q)  = P N ( q )  in zero field 
in equilibrium. Note that PN(q)  is defined in terms of microscopic states whereas P(q)  
(equation (1)) involves the properties of thermodynamics states. However, it is straight- 
forward to show (Young 1985) that the two agree in the thermodynamic limit, i.e. 

lim P N ( q )  = P ( q ) .  (9) 
N+ m 

In fact, our criterion for equilibration only guarantees the convergence of even moments 
of PN(q) ;  the vanishing of the odd moments can only be achieved on the longer time 
scale of flipping the entire ensemble. Instead, our procedure puts that in by hand. 

To study the correlations among the overlaps Q,, we look at probability distributions 
of differences between the three instantaneous overlaps Q12(t), Q 2 3 ( t )  and Q31(t) .  We 
first label them q l ,  q2,  q3 in decreasing order of their magnitudes and, if necessary, 
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reverse one of the sets of spin configurations S t ( t ) ,  S:(t) or S:(t)  to make q1 and q2 
positive. Thus q1 3 q2 2 /q3/ 0. Mathematically, this can be expressed as 

41 = max(IQizI, IQz~I, IQxI) 

q3 = S ~ ~ ( Q ~ ~ Q , , Q X >  min(lQ121, lQ231, 1Q311) 

q 2  = IQ121 + IQ231 + IQ311 - 41 - 1431. 

(loa) 

(lob) 

(10c) 

According to Mezard et a1 (1984a), (q3) is guaranteed to be positive and in fact equal 
to (q2)  in the thermodynamic limit. Consequently, we look at the probability distribution 

@I(%) = c 6[q2(t) - q 3 ( 4  - 6 4  (11) 

(the subscript I stands for the isosceles triangles supposed to emerge as N - t  CO). As for 
PN(q) ,  we calculate cDI(6q) from microscopic states but this goes over to the cor- 
responding quantity defined in terms of thermodynamic states for N +  m. The latter is 
predicted (Mezard et a1 1984a, b) to be 6(6q) .  Consequently, <PI(&) should tend to 
6(6q) ,  i.e. a delta function at the origin, in the thermodynamic limit. For finite but large 
N ,  therefore, one may expect Q1(6q) to be strongly peaked near 6q = 0. However, care 
must be taken to distinguish between effects due to the predicted ultrametric topology 
and other effects which can look rather similar. For example, one can define the Ham- 
ming distance dEp between two microscopic states a and p by 

This is just N-’ times the number of spins which have different orientations in the two 
states, The Hamming distances satisfy triangular inequalities 

dzp s dp”y + d,”n 

6q = 42 - q3 s 1 - 41. 

(13) 

which imposes the restriction 

(14) 

Thus, for q1 -t 1, 6q is guaranteed to be small for reasons having nothing to do with 
ultrametricity. In fact, for N - t  CO, where one can define thermodynamic states and 
P ( q )  = Ofor qEA there is amore stringent restriction. Consider theN-dimensionalvectors 
formed from the site magnetisations mr for various thermodynamic states. One can 
construct the Euclidean distance dEp between two states, where clearly 

dEp = [ 2 ( q E A  - 4iUg>I”’~ 

(qEA - 4i)l” 2 (qEA - 4 3 1 ” ~  - (qEA - q2)1’2 

(15) 

The triangular inequality then gives 

(16) 

and so 6q -t 0 as q1 -t q E A .  Hence it is necessary to study Q1(6q) for q1 significantly less 
than q E A ,  although q1 cannot be too small as otherwise most of the data will be discarded 
and the statistics will be poor. Furthermore, we study cDI(6q) as a function ofsamplesize 
as a means of separating effects due to triangle inequalities (which are presumably less 
size independent) than those due to ultrametricity. 
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To check for equilateral triangles, we have looked at the variation in the distribution 
of the quantity Aq = 2q1 - q2 - q3,  i.e. 

@E(Aq) = 2 6I2q1 (l) - q2(t)  - q3(t) - Aql. (17) 

Equilateral triangles formed by the d!p would have equal q-values and would conse- 
quently contribute a delta function to @E(Aq) at Aq = 0. However, unlike Q1( dq), which 
was supposed to be a pure delta function at the origin as N -  00, @E(Aq) is predicted to 
have an extra continuous part due to the non-equilateral isosceles triangles. In fact, 
using the calculated distribution of three mutual overlaps (Mezard et a1 1984a, b), 

+ P(q3)P(q1)6(q3 - q lP(q1  - q2)l 

@ d b )  = m A 4 )  + W q 1  - A . q / w ( q l )  

(18) 

(19) 

one may show that 

where x(q) is the Parisi replica symmetry breaking variable, with P(q)  = dx/dq, and 

Since we shall discuss the size dependence of our results, it is useful, at this point, to 
discuss what is known about finite-size effects in the SK model. For T > T, and large N ,  
P,(q) is Gaussian, and the width is ( x ~ ~ / N ) ~ / ~  since xSG is, by definition, N times the 
second moment of P,(q). At T,, P,(q) will have a different shape whose width will no 
longer vary as W 1 1 2  because xSG diverges for N +  W. In fact, one expects (Bray and 
Moore 1979) that xsG N113 and so the width varies as N-l13. The natural finite-size 
scaling ansatz for PN(q)  is then 

x(0) = 0. 

P,(q) = N”3P(N1’3q) ( T  = T,). (20) 
For T < T,, P(q)  has a delta function at q = q E A  due to the self-overlap of a single valley. 
This will become a peak of finite width in P,(q) due to fluctuations between microscopic 
states belonging to a single valley. It appears that each thermodynamic state is ‘marginal’ 
(Bray and Moore 1979, Sompolinsky 1981) so that for example the spin-glass sus- 
ceptibility of a single valley, xgG, defined by 

1 
x$G = ((’L’J)? - (’L)“,’])?) (21) 

‘ 3 1  

will diverge everywhere in the ordered phase. Here (. . .)? denotes a partial average in 
state ‘a’. We expect that the width of the peak in P,(q) around q = q E a  will be 
( x ~ ~ / N ) ~ / ~ .  It has been argued (Bray and Moore 1979) that xgG N113, the same as at 
T,, so that again the width is proportional to N-l13. This can also be inferred from recent 
calculations of xgG (de Dominicis and Kondor 1986). They compute the Gaussian 
fluctuations about the mean-field solution but for a finite-range model obtaining 
xgG(k) = k W 2 ,  where k is the wavevector, both at and below T,. For a system of linear 
dimension L ,  this would become L2 (because the smallest k in the box is proportional to 



3002 R N Bhatt and A P Young 

I 

A4 

Figure 1. Order parameter distri- 
bution function PN(q)  for N = 32 
(0 , .  . . . .), N = 128 (U, -) and 
N=512(A,---) .  

L-') and, to convert this to the N dependence of the infinite-range model using N = Ld,  
one should use the upper critical dimension d = d ,  = 6 (Bray and Moore 1979, Binder 
et aZ1985). This given the N1I3 dependence. We expect any distribution whose width in 
q comes from fluctuations in a single thermodynamic state will have a width which varies 
asymptotically as N-lI3 both below and at T,. Above T,, one would have the conventional 
N-lI2 dependence. 

3. Results and discussion 

3.1. The low-temperature phase (T  = 0.6TJ 

Figure 1 shows the distribution of overlaps P,(q) for sizes N = 32,128 and 512 at T = 
O.6Tc. As can be seen, there is a gradual evolution of a peak in P,(q) with increasing 
size at the Edwards-Anderson order parameter The approximate formula qEA = 
1- 2(T/T,)2 + T/T,, which correctly gives the first three terms in an expansion away 
from T, and also gives correctly a quadratic variation with T as T-, 0 with about the 
correct coefficient, yields an estimate qEA = 0.496. In agreement with previous work 
(Young 1983) at T = O.4Tc, we find a tail extending down to q = 0. The somewhat more 
pronounced size dependence in our results than in the previous work is not unexpected 
as the temperature here (O.6Tc) is closer to T,. For the largest size N = 512 the apparent 
reduction in P,(q) at low q is within statistical error. (Since P,(q) is not self-averaging, 
it is subject to large sample-to-sample fluctuations.) 

We plot in figure 2(a) the distribution DI(Sq)  using the data within the interval 41 = 

than a fixed value, so that statistics do not deteriorate catastrophically as size increases.) 
As can be seen, the distribution narrows dramatically with size. However, this value of 
q1 is almost equal to qEA for the infinite system, although it is at the lower end of the 
peak in P,(q) for the sizes studied. Consequently, for large N ,  such that the peak is close 
to qEA but the width is not smaller than the difference between this q1 and qEA, two 
copies would be in the same thermodynamic state, and the distribution D1(6q) would be 
a measure of the width of the peak in P,(q) rather than ultrametricity. While it is unlikely 
that the sharpening of the peak in P,(q) is the entire cause of the narrowing of DI(6q), 

1 - + "f 32 or sizes N = 32,128 and 512. (It is necessary to take a finite window for q l ,  rather 
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6q 

Figure 2. Distribution function QI(6q)  for (a )  9> = t and (b )  9, = 1, indicating the growth of 
'isosceles triangles' with size at T = O.6Tc, for N = 32 (a, . . . .), N = 128 (0, -) and 
N = 512 (A, ---). 

since q1 is significantly below the peak in P,(q) even for our largest size, we have 
obtained the same distribution for a different window of q1 = 8 f h, and this is shown 
in figure 2(b). The narrowing is not as fast but is nevertheless present; this value of q1 is 
well below qEA for the infinite system and is clearly in the tail of P,(q) for the sizes 
studied. The difference between the results for the two q1 could be because for q1 = i, 
there is additional narrowing effect due to the sharpening up of the P,(q) as discussed 
above. Alternatively, because the extent of the distribution of dq( =q2  - q3)  is bounded 
by the magnitude of q1 (since q2 and q3 are smaller than it, by definition), there may be 
some saturation effects for small N and low ql. This would make the apparent depen- 
dence of the width of @I on Nweaker at low N ,  resulting in an overall weaker dependence 
for our range of N for q1 = 9 than it would be as N-, W. We are unable to say which of 
the two is the correct interpretation. For a smaller value of q1 (ql = a), we find even 
smaller variation with size, which could be suggestive evidence in favour of the latter 
scenario. However, in this case our results have large statistical errors because of the 
smaller sampling size and cannot be overly relied on. 

Figure 3 shows in a double-logarithmic plot the variation in the first moment of P,(q) 
and of for q1 = 4 and 8 with Nfor sizes N = 16512. The variation in the width of 
cPI with N is consistent with a power-law decrease N-" with x = 0.33 for q1 = 4 and x = 
0.25 for q1 = i. In contrast, the first moment of P,(q) varies little with N and appears to 
be saturating at the Parisi value 

T 
q(x) d x  = 1 - - (22) I Tc 

which is 0.4 for our temperature. The second moment of P,(q), also shown in figure 
3,  varies somewhat more with N but is consistent with extrapolation to the value 
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Figure 3. Double-logarithmic plot 
of the first moment (141) (0) and 
second moment ( (q2 )  - (lql)2)1’2 
(0) of P,(q), and the first moment 
(6q)  of @,(Sq)  for q1 = 4 (W) and 
q = 4 (0) against N ( N  = 16512). 

11 I I I I I 1 The arrow denotes the value of the 
16 64 256 second moment of P ( 9 )  as N-+ m, 

N ( l og  scale1 calculated approximately. 

( b l  

0 0.25 0.50 0.75 

A4 
Figure 4. Distribution function QE(Aq) for (a) q ,  = 4 and ( b )  q1 = 1, looking for the growth 
of ‘equilateral triangles’ with size at T = O.6Tc: N = 32 (0, . . . .), N = 128 (0, -) and 
N = 512 (A, ---). 

( ( q 2 )  - (~q~)z)1’2 = 0.14, which is obtained by replacing (q2 )  by the SK solution (Sher- 
rington and Kirkpatrick 1975). (This is probably not a bad approximation, since (4’) = 
1 - 2TI U//Ta for the SK model, and the energy Ufor the Parisi solution differs very little 
from the SK solution.) 

We now look at the distribution of Aq = 2q1 - q2 - q3 to see the evidence for 
equilateral triangles. Figure 4(a) plots the distribution QE(Aq) with q1 = i fo r  the same 
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FigureS. Universalscalingplotat T = T,of 
the order parameter distribution function: 
A ,  N = 16;@, N = 32;0,  N = 64; 0, N = 
128; H, N = 256; V, N = 512. 

sequence of sizes N = 32,128 and 512. There appears to be a shift in weight towards low 
A q ,  consistent with the results of Mezard eta1 (1984a, b) that QE(Aq) has adelta function 
contribution at Aq = 0. However, unlike @E(Aq) has an additional component 
out to large Aq,  as expected from equation (19) on the basis of the Parisi solution, 
because of which the results cannot be analysed more quantitatively without resorting 
to theory. However, one clear complicating feature is that, for large finite sizes N ,  OE(0) 
appears to be zero, linearly with a slope proportional to N ;  so, if it does approach a delta 
function as N +  00, the approach is somewhat more complex than in the case of @.,(6q). 
(This should be contrasted with the result for infinite N based on the Parisi solution, 
equation (19), which has a finite intercept at Aq = 0, in addition to the &function.) 
Figure 4(b) for q1 = demonstrates this difference even more dramatically. We have 
evidence from the data at T, that finite-size corrections to Q E ( A q )  are larger than for 

or P,(q); consequently, results for larger sizes, or f in i te4  corrections to the 
Parisi result, are necessary, before an adequate test of this prediction can be made. 

3.2. The critical temperature (T  = T,) 

The ultrametric correlations are supposed to be a property of the low-temperature 
phase; if, so, they should not be seen at T,, where there is no replica symmetry breaking. 
At T,, the Edwards-Anderson order parameter qEA + 0 in the thermodynamic limit; 
consequently, one has to scale the overlaps by qN’/3 to search for any possible ultra- 
metricity within the narrowing distributions of q ,  6q and Aq. Because the whole distri- 
bution shrinks towards the origin as N+ 00, we have used data for all q1 rather than a 
fixed q1 in obtaining the distribution of 6q and Aq. Figure 5 shows the scaled plot of 
P(qNA)/N* against qNA with A = 0.35, and all sizes N = 16-512 fall within our error bars 
on one universal plot, except for small deviations for N = 16 and perhaps N = 32. The 
value A = 0.35 is within acceptable bounds of the expected value A = 4, considering that 
finite-size scaling corrections for T, (Bhatt and Young 1985) ranging from 10% ( N  = 
32-128) to 3% ( N  = 128-512). 
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Figure 6. Universal scaling plot at T = T, of the 
distributionQl(Gq)(seetext): A , N =  1 6 ; O , N  = 
3 2 ; 0 ,  N =  64;  0, N = 128; M, N =  256; 7,  N =  
512. 

0 2 4 
A q  No' 

Figure 7. Universal scaling plot at T = T, of the 
distribution Q,(Aq) (see text): A ,  N = 16; @, 
N = 32; 0, N = 64;  0,  N = 128; M, N = 256; V, 
N = 512. 

Figure 6 shows the corresponding plot for QI(6q), i.e. N-'QI(6q N") against 6q N'. 
Once again the data for all sizes N = 16-512 collapse onto a single universal plot with 
A = 0.3, which is also within acceptable limits of the result A = expected on the basis 
of a single order parameter exponent. If there was any tendency towards ultrametricity 
near T, as has been suggested for the three-dimensional short-range spin glass for small 
sizes (Sourlas 1984) then, with increasing N ,  6q should have scaled to zero faster than q 
and the A-value for the scaling plot for QI(6q) in figure 6 should have been higher than 
that for P,(q) in figure 5. Our best fits show instead that within our resolution the two 
are the same. 

Finally the scaling plot for equilateral triangles QE(Aq N')/N' against Aq NA with 
A = 0.3 is shown in figure 7 ,  and again the data fall onto one universal plot. Here, 
however, we see greater finite-size effects and a systematic trend for the deviation for 
smaller sizes ( N  = 64,32 and 16). This universal scaling plot shows, as the previous plot 
did, that any ultrametricity that is present in a SK spin glass is a property of the low- 
temperature phase. 

4. Conclusions 

We have studied, via Monte Carlo simulation, the infinite-range (SK) Ising spin glass at 
the transition temperature T, and, in the spin-glass phase ( T  = O.6Tc), for sizes N = 
16-512. By running three copies of each sample (same size and bond configurations) in 
parallel, we probe various quantities related to the three mutual overlaps. Our results 
are consistent with earlier work (Young 1983) which indicated a non-trivial overlap 
distribution PN(q)  for large N .  By looking at the size dependence of the distribution 
QI(6q) of the difference between the smaller two of the overlaps, we find that the 
distribution becomes more peaked at bq = 0, with increasing N .  However, the depen- 
dence on Nvaries with the value chosen for the largest overlap q l ,  within our range of 
sizes. The strongest variation in the width is proportional to for q1 * qEA, may 
be enhanced owing to narrowing effects of the peak in P,(q) as Nincreases. The weaker 
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variation, e.g. that proportional to at q1 = 0 . 7 5 q E A ,  and even slower for q1 = 
0 . 5 q E A ,  may be somewhat reduced because of saturation effects at small N .  Because of 
these complications, we cannot give a definitive value for the intrinsic variations in the 
N +  limit. Nevertheless, our results are consistent with the expectation on the basis 
of the Parisisolution that QI(6q) scales to a delta function at 6q = Oin the thermodynamic 
limit. 

We have also looked at the size dependence of the distribution QE(Aq) where A4 is 
the difference between twice the maximum overlap and the sum of the two smaller 
overlaps (out of the three). Our results indicate a growth in weight at small Aq with 
increasing N ,  as expected with the Parisi solution which gives a finite probability of all 
three overlaps equal and hence a delta function in QE(Aq) at Aq = 0. However, here 
the dependence q1 is even larger, and so larger sizes and theoretical input of finite-size 
corrections are necessary before a quantitative analysis can be made. One other worry 
is that, unlike the predictions of Mezard et a1 (1984a, b) for the thermodynamic limit 
N-* CO, the smallest overlap q3 does not turn out to be always positive for our N ,  and the 
incidence of negative q3 (540% for our q l )  does not decrease significantlywith increasing 
N in our range. 

By contrast, our results at T = T, imply that all distributions P,(q), Q1(6q) and 
QE(Aq) scale similarly with N consistent with the expected result. 

In conclusion, we have attempted the most systematic and detailed investigation of 
ultrametricity in the infinite-range Ising spin glass to date. The strongest evidence in its 
favour appears to be the narrowing of the distribution Q1(6q), indicating the emergence 
of isosceles triangles. Unfortunately, even in this case, adefinitive analysis is not possible, 
because of complications due to finite-size effects. The evidence for equilateral triangles 
is rather weak, and the distribution QE(Aq) is far from that expected from the Parisi 
theory. Given the difficulties that we have found in seeing ultrametricity in the SK model, 
where there are strong theoretical arguments that it occurs, we feel that claims made for 
ultrametricity in other models should be carefully checked to see whether other factors 
such as triangle inequalities or a peaked distribution P(q)  might be influencing the data. 
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